

AACOMA

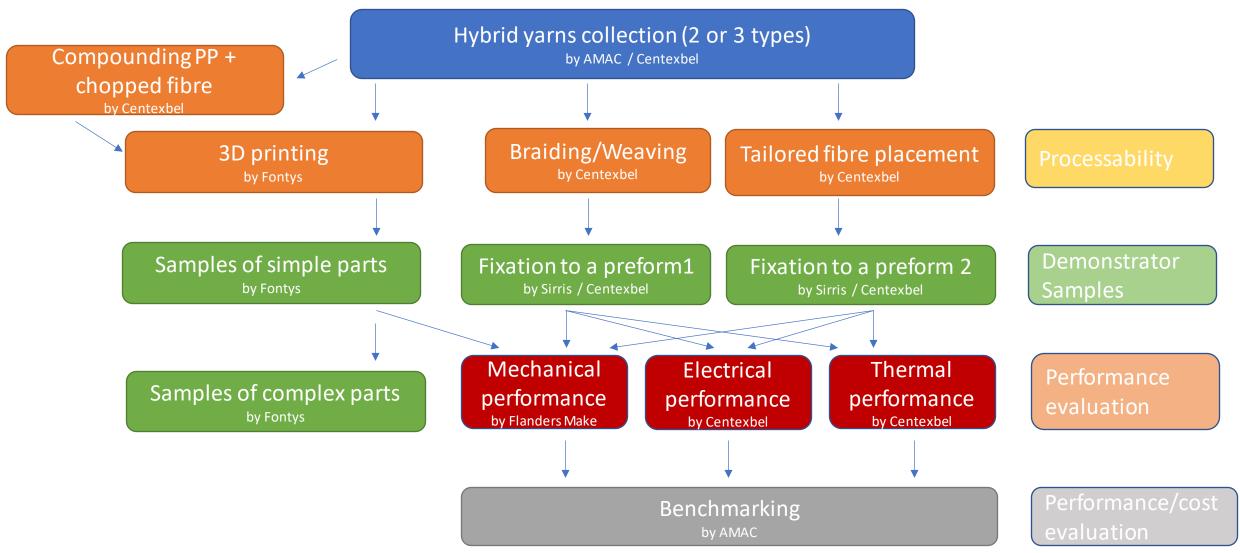
Demo project #2

Hybrid yarns for functionalized composites

Lead partner: Centexbel

Motivations

- Hybrids yarns (thermoplastic or metalic based) have several advantages:
 - Thermoplastic: out of autoclave process (decrease the prise) / Higher recyclability / Heat sealing / Easy to stock
 - Metallic: electrical and heat conductivity, electromagnetic shielding
- Three demonstrators are planned:
 - Composite made by hybride yarn based on Glass fibre and polypropylene
 - Composite with elctromagnetic shielding layer based on basalte fibre coated with aluminium
 - 3D printing modulable mold


Goals of the demonstrator

- Provide some samples of composite made by using hybride yarns and compare cost/performance with classic fabrication
- Provide a cheaper solution in mold fabrication compare with current aluminium molds with the same surface aspect and cooling/heating possibility.
- Demos are dedicated to produce composite with functionnality as EM absorption, electrical conductivity, thermal conductivity

Tasks & Workplan

Current status

- Hybrid yarn identification:
 - Hybrid glass fibre commercially available from Jushi (Compfil)
 - Basalt fibre coated aluminium from Fibrecoat / Carbon plated with Nickel
 - Glass fibre coated polypropylene from Fibrecoat (available at semestre 2)
 - Others could be possible: Comfil products, Shappe Technics products,...

- Material processability:
 - Tailored fibre placement technics will be used to process structures with EM shielding (possibility to weave)
 - Thermo-pressing will be used as consolidation stage (autoclave could be also used)
 - Balaste coated aluminum fibre must be cut to be used in additive manufacturing machine (0,3-0,5mm lenght)

Current status

Example of Electromagnetic shielding properties: 2 GHz frequency (4G smartphone)

Туре	Grade	Shielding effectiveness (dB)	Classification	Electromagnetic shielding, ES (in %)	Shielding effectiveness VS grid size
Class I Professional use	AAAAA	SE>60 dB	Excellent	ES>99.9999%	
	AAAA	60 dB≥SE>50 dB	Very good	99.9999%≥ES>99.999%	ලි ^{60 -} ප 50 -
	AAA	50 dB≥SE>40 dB	Good	99.999%≥ES>99.99%	S S
	AA	40 dB≥SE>30 dB	Moderate	99.99%≥ES>99.9%	
	А	30 dB≥SE>20 dB	Fair	99.9%≥ES>99.0%	te 30 -
Class II General use	AAAAA	SE>30 dB	Excellent	ES>99.9%	
	AAAA	30 dB≥SE>20 dB	Very good	99.9%≥ES>99.0%	ier 10 -
	AAA	20 dB≥SE>10 dB	Good	99.0%≥ES>90%	0 -
	AA	10 dB≥SE>7 dB	Moderate	90%≥ES>80%	0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Grid size (mm)
	А	7 dB≥SE>5 dB	Fair	80%≥ES>70%	

Current status

3D manufacturing mold:

- AM Flexbot printer for composites (CEAD): combine 3D and milling to achieve the required surface finish
- PP matriw with a mix of chopped FG and FG coated aluminum: length between 0,3-0,5 mm
- Work plan in 3 steps:
 - Flat plate to measure mechanical and thermal behaviour with and without surface milling
 - flat test piece with different shape and size of cooling channels
 - 3D printed modular mold with integrated heating/colling chanels

DEMO #2 Leader

Baptiste Herlin - <u>bhe@centexbel.be</u>

Bert Huis in 't Veld - <u>b.huisintveld@fontys.nl</u>

AACOMA Project Coordinator

Bernard Paquet - <u>bernard.paquet@centexbel.be</u>

AACOMA Communication

Michael Effing - <u>amac@effing-aachen.de</u>

Mona Ziegler - amac-communications@effing-aachen.de

Follow us on our website

https://aacoma-interreg.eu/

